If tanⲪ +sinⲪ = m and
tanⲪ -sinⲪ = n ,
Show that -
☆CONTENT QUALITY SUPPORT☆
Answers
Answered by
15
Hola Aiswary ,
tan ∅ + sin ∅ = m
tan ∅ - sin ∅ = n
To prove :
m² - n² = 4√mn
Proof :
LHS :
( tan ∅ + sin ∅ )² - ( tan ∅ - sin ∅ ) ²
= tan²∅ + sin²∅ + 2 tan ∅ × sin ∅ - [ tan ²∅ + sin ²∅ - 2 tan ∅ × sin ∅]
= tan ²∅ + sin²∅ + 2 tan ∅ × sin ∅ - tan²∅ - sin²∅ + 2 tan ∅ × sin ∅
= 4 tan ∅ × sin ∅
= 4 ( sin∅ / cos ∅ ) × sin ∅
= 4 sin²∅ / cos ∅........
--------------------------------------
RHS :
4√mn
= 4 √ [ ( tan ∅ + sin ∅) ( tan ∅ - sin ∅ ) ]
= 4 √ [ tan² ∅ - sin² ∅ ]
= 4 √ [ ( sin²∅/cos²∅ ) - sin²∅ ]
= 4 √ [ ( sin²∅ - sin²∅ × cos²∅ ) / cos² ∅ ]
= 4 √ [ ( sin²∅ × sin²∅) / cos²∅ ]
= 4 × sin²∅ / cos∅..........
--------------------------------------
Therefore LHS = RHS
Hope it helps.....
tan ∅ + sin ∅ = m
tan ∅ - sin ∅ = n
To prove :
m² - n² = 4√mn
Proof :
LHS :
( tan ∅ + sin ∅ )² - ( tan ∅ - sin ∅ ) ²
= tan²∅ + sin²∅ + 2 tan ∅ × sin ∅ - [ tan ²∅ + sin ²∅ - 2 tan ∅ × sin ∅]
= tan ²∅ + sin²∅ + 2 tan ∅ × sin ∅ - tan²∅ - sin²∅ + 2 tan ∅ × sin ∅
= 4 tan ∅ × sin ∅
= 4 ( sin∅ / cos ∅ ) × sin ∅
= 4 sin²∅ / cos ∅........
--------------------------------------
RHS :
4√mn
= 4 √ [ ( tan ∅ + sin ∅) ( tan ∅ - sin ∅ ) ]
= 4 √ [ tan² ∅ - sin² ∅ ]
= 4 √ [ ( sin²∅/cos²∅ ) - sin²∅ ]
= 4 √ [ ( sin²∅ - sin²∅ × cos²∅ ) / cos² ∅ ]
= 4 √ [ ( sin²∅ × sin²∅) / cos²∅ ]
= 4 × sin²∅ / cos∅..........
--------------------------------------
Therefore LHS = RHS
Hope it helps.....
Róunak:
appreciated :)
Answered by
13
Heya friends ☺
Here is ur answer ...
-------------------------------
From LHS...
m²-n²
=(tan¢+sin¢)²-(tan¢-sin¢)²
=4tan¢×sin¢
➡Using this formula (a²+b²)-(a²-b²)=4ab
now from RHS =4√mn
=4√mn
=4×√(tan¢+sin¢)×(tan¢-sin¢)
=4×√tan²¢-sin²¢
=4×√sin²¢-sin²×cos²¢
------------------------------
cos¢
=4×sin¢/cos¢√(1-cos²¢)
=4×tan¢√sin²¢
=4tan¢×sin¢
Thus, here prooved ...
LHS =RHS
hence ,m²-n²=4√mn..
Hope it helps you..
#Rajukumar@@
Here is ur answer ...
-------------------------------
From LHS...
m²-n²
=(tan¢+sin¢)²-(tan¢-sin¢)²
=4tan¢×sin¢
➡Using this formula (a²+b²)-(a²-b²)=4ab
now from RHS =4√mn
=4√mn
=4×√(tan¢+sin¢)×(tan¢-sin¢)
=4×√tan²¢-sin²¢
=4×√sin²¢-sin²×cos²¢
------------------------------
cos¢
=4×sin¢/cos¢√(1-cos²¢)
=4×tan¢√sin²¢
=4tan¢×sin¢
Thus, here prooved ...
LHS =RHS
hence ,m²-n²=4√mn..
Hope it helps you..
#Rajukumar@@
Similar questions