If tan +sin = m and tan -sin =n, then prove that m^2-n^2= 4underrootmn
Answers
Answered by
1
Step-by-step explanation:
L.H.S: m^2-n^2
(tan +sin)^2-(tan-sin)^2
(tan^2+sin^2+2tan×sin)-(tan^2 +sin^2- 2tan×sin)
4tan×sin
R.H.S : 4 under root mn
4 underrrot (tan +sin) (tan -sin)
4 root tan^2- sin^2
4 root sin^2- sin^2× cos^2 / cos^2
4 root sin^2 ( 1- cos^2)/cos^2
4 root tan^2× sin^2
4 tan×sin
L.H.S = R.H.S
PROVED..
Attachments:
Similar questions