if tan Teeta+sin teeta= m and tan teeta-sin =n show that m square -n square = 4√mn
Answers
Answered by
4
LHS = m^2−n^2
= (tantheta+sintheta)^2−(tantheta−sintheta)^2
= (tantheta+sintheta+tantheta−sintheta) (tantheta+sintheta−tantheta+sintheta)
= (2tantheta)(2sintheta)
= 4 * sintheta/costheta * sintheta
= 4 sin^2 theta/cos theta --------------------- (1)
RHS = 4 root mn
= 4 root (tan theta+sintheta)(tantheta−sintheta)
= 4 root(tan^2 theta - sin^2 theta)
= 4 root (sin^2 theta/cos^2 theta - sin^2 theta)
= 4 root(sin ^2 theta - sin ^2 theta.cos^2 theta/cos^2 theta
= 4 root(sin ^2 theta(1-cos ^2 theta)/cos ^2 theta)
= 4 root (sin ^2 theta.sin^2 theta/cos ^2 theta)
= 4 sin ^2 theta/cos theta -------------------- (2).
LHS = RHS.
hence proved.
Similar questions