if tan theta = 1/√3 then find the value 4cos²theta-3/3sin²theta+1
Answers
Answered by
1
Answer:
0
Step-by-step explanation:
tan theta=p/b=1/root 3
h²=p²+b²
h²=(1)²+(root 3)²
h²=1+3
h²=4
h=2
Cos theta=b/h=root 3/2
Sin theta=p/h=1/2
4 cos²theta-3/3sin²theta+1
=4(root 3/2)²-3/3(1/2)²+1
=4(3/4)-3/3(1/4)+1
=3-3/3/4+1
=0/3+4/4
=0/7/4
=0/7×4
=0/7
=0
Answered by
1
Answer:
(10 - 6)/5
Step-by-step explanation:
tan theta = 1/
tan theta = tan 30 [tan 30 = 1/]
theta = 30
⇒ 4 cos²theta - 3/ 3sin²theta + 1
= 4 cos²30 - 3/ 3sin²30 + 1
= 4 * /2 - 3/3*1/2 + 1 [sin 30 = /2; cos 30 = 1/2]
= 2 - 3/ 5/2
= 2 - 6/5
= (10 - 6)/5
HOPEFULLY YOU UNDERSTOOD :)
Similar questions