Math, asked by SugarCandy09, 19 days ago

If tan theta = 1 by root 3 theta is acute then find the value of 1+ sin theta

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm \: 0 < \theta  < 90\degree  \\

and

\rm \: tan\theta  =  \dfrac{1}{ \sqrt{3} }  \\

From Trigonometric table of standard angles, we have

\rm \: tan\theta  =  tan30\degree   \\

\rm\implies \:\theta  = 30\degree  \\

Now, Consider

\rm \: 1 + sin\theta  \\

\rm \:  =  \: 1 + sin30\degree   \\

\rm \:  =  \: 1 + \dfrac{1}{2}    \\

\rm \:  =  \: \dfrac{2 + 1}{2}    \\

\rm \:  =  \: \dfrac{3}{2}    \\

Hence,

\rm\implies \: \:  \: \boxed{\rm{  \:\rm \: 1 + sin\theta  =  \: \dfrac{3}{2} \:  \: }}  \\

\rule{190pt}{2pt}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions