If tan theta= 1/root3, prove that 7 sin^2 theta + 3 cos^2 theta = 1
Answers
Answered by
3
Solution:
- Given : tan∅ = 1/√3
- To prove : 7sin²∅ + 3cos²∅ = 4
We have ;
=> tan∅ = 1/√3
=> tan∅ = tan30°
=> ∅ = 30°
Now,
7sin²∅ + 3cos²∅ = 7sin²30° + 3cos²∅
= 7×(sin30°)²+ 3×(cos30°)²
= 7×(1/2)² + 3×(√3/2)²
= 7×(1/4) + 3×(3/4)
= 7/4 + 9/4
= (7 + 9)/4
= 16/4
= 4
Thus,
7sin²∅ + 3cos²∅ = 4
Hence proved .
Similar questions