Math, asked by annumehta043, 11 months ago

if tan theta + 1/tan theta = 2 find the value of tan^2 theta + 1/tan^2theta​

Answers

Answered by ska150502
0

Answer:

2

Step-by-step explanation:

tanΘ +1/tanΘ = 2

squaring on both sides

tan^2Θ + 1/tan^2Θ +2 = 4

tan^2Θ + 1/tan^2Θ =2

Answered by warylucknow
0

The value of tan^{2}\ \theta+\frac{1}{tan^{2}\ \theta} is 2.

Step-by-step explanation:

It is provided that:

tan\ \theta+\frac{1}{tan\ \theta}=2

Compute the value of tan^{2}\ \theta+\frac{1}{tan^{2}\ \theta} as follows:

(tan\ \theta+\frac{1}{tan\ \theta})^{2}=tan^{2}\ \theta+\frac{1}{tan^{2}\ \theta}+(2\times tan\ \theta\times \frac{1}{tan\ \theta})

(tan\ \theta+\frac{1}{tan\ \theta})^{2}=tan^{2}\ \theta+\frac{1}{tan^{2}\ \theta}+2

(2)^{2}=tan^{2}\ \theta+\frac{1}{tan^{2}\ \theta}+2

tan^{2}\ \theta+\frac{1}{tan^{2}\ \theta}=4-2

tan^{2}\ \theta+\frac{1}{tan^{2}\ \theta}=2

Thus, the value of tan^{2}\ \theta+\frac{1}{tan^{2}\ \theta} is 2.

Learn  more:

https://brainly.in/question/11424137

Similar questions