Math, asked by shenaz10998, 8 months ago

if tan theta= 2-√3 then prove that cot theta= 2+√3.​

Answers

Answered by gagandeepmehra23
0

Answer:

iven:

\sin \theta+\cos \theta=\sqrt{3}sinθ+cosθ=

3

To Prove:

\tan \theta+\cot \theta=1tanθ+cotθ=1

Proof:

\sin \theta+\cos \theta=\sqrt{3}sinθ+cosθ=

3

Squaring of both sides, we get:

(\sin \theta+\cos \theta)^{2}=(\sqrt{3})^{2}(sinθ+cosθ)

2

=(

3

)

2

Using the formula (a+b)^{2}=a^{2}+b^{2}+2 a b(a+b)

2

=a

2

+b

2

+2ab

Applying formula in (\sin \theta+\cos \theta)^{2},(sinθ+cosθ)

2

,

\begin{gathered}\begin{array}{l}{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=3} \\ {\because \sin ^{2} \theta+\cos ^{2} \theta=1}\end{array}\end{gathered}

sin

2

θ+cos

2

θ+2sinθcosθ=3

∵sin

2

θ+cos

2

θ=1

1+2sinθcosθ=3

2sinθcosθ=2

sinθcosθ=1 ______(1)

The value of the \sin \theta+\cos \theta=\sqrt{3}sinθ+cosθ=

3

is sinθcosθ=1

To prove:

tanθ+cotθ=1

L.H.S

tanθ+cotθ

Transforming the identity of tanθ ; cotθ into \frac{\sin \theta}{\cos \theta}

cosθ

sinθ

; \frac{\cos \theta}{\sin \theta}

sinθ

cosθ

\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}

cosθ

sinθ

+

sinθ

cosθ

\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}

sinθcosθ

sin

2

θ+cos

2

θ

Substituting equation (1) we get

\begin{gathered}\begin{array}{l}{\frac{\sin ^{2} \theta+\cos ^{2} \theta}{1}} \\ {\because \sin ^{2} \theta+\cos ^{2} \theta=1}\end{array}\end{gathered}

1

sin

2

θ+cos

2

θ

∵sin

2

θ+cos

2

θ=1

tanθ+cotθ=1=R.H.S

∴L.H.S=R.H.S

Hence proved

∴If \bold{\sin \theta+\cos \theta=\sqrt{3}}sinθ+cosθ=

3

then \bold{\tan \theta+\cot \theta=1}tanθ+cotθ=1 .

Similar questions