Math, asked by Cheshta, 1 year ago

If tan theta= 24/7, then find sin theta + cos theta

Answers

Answered by Anonymous
94
Tan theta = opposite / adjacent = 24/7
the other side ( hypotenuse ) = √ 24² + 7² = 25

Sin theta = opposite / hypotenuse = 24/25
cos theta = adjacent / hypotenuse = 7/25
adding both you get 31/25

Cheshta: Please answer my rest of the questions plz
Anonymous: I'll see...
Cheshta: yes it is the archive u can see.. its really important! pls answer d unanswered ones! Thanx.
Anonymous: Ok..I'll try
Cheshta: tq.
Answered by pinquancaro
84

Answer:

\sin\theta+\cos \theta=\frac{31}{25}

Step-by-step explanation:

Given : \tan\theta=\frac{24}{7}

To find : \sin\theta+\cos \theta ?

Solution :

\tan\theta=\frac{24}{7}

According to trigonometry properties,

\tan\theta=\frac{P}{B}

So, Perpendicular P=24 and Base B=7

The hypotenuse is H=\sqrt{P^2+B^2}

H=\sqrt{24^2+7^2}

H=\sqrt{576+49}

H=\sqrt{625}

H=25

We know,

\sin\theta=\frac{P}{H}

\sin\theta=\frac{24}{25}

\cos\theta=\frac{B}{H}

\cos\theta=\frac{7}{25}

Substitute in the expression,

\sin\theta+\cos \theta=\frac{24}{25}+\frac{7}{25}

\sin\theta+\cos \theta=\frac{24+7}{25}

\sin\theta+\cos \theta=\frac{31}{25}

Similar questions