If 7 sin^2 theta + 3 cos^2 theta = 4, prove that, tan theta= 1/root3
Answers
Answered by
752
7sin²θ + 3cos²θ = 4
7sin²θ + ౩(1-sin²θ) = 4
7sin²θ+3-3sin²θ = 4
4sin²θ+3 = 4
4sin²θ=1
sin²θ = 1/4
sinθ = +1/2
sinθ = + π/6
Therefore tan θ = + π/6
then we get tan θ = + 1/√3
As the required answer is tan θ = + 1/√3 (here we considered θ =+ π/6)
7sin²θ + ౩(1-sin²θ) = 4
7sin²θ+3-3sin²θ = 4
4sin²θ+3 = 4
4sin²θ=1
sin²θ = 1/4
sinθ = +1/2
sinθ = + π/6
Therefore tan θ = + π/6
then we get tan θ = + 1/√3
As the required answer is tan θ = + 1/√3 (here we considered θ =+ π/6)
Cheshta:
Tnx fr d answer..will u pls answer my other questions.. i ve jst asked plss!! its urgent
Answered by
628
Answer :-
→ tan30° = 1/3 .
Step-by-step explanation :-
We have,
→ 7 sin² ∅ + 3 cos² ∅ = 4 .
⇒ 4 sin²∅ + 3 sin²∅ + 3 cos²∅ = 4 .
⇒ 4 sin²∅ + 3( sin²∅ + cos²∅ ) = 4 .
⇒ 4 sin²∅ + 3( 1 ) = 4 . [ ∵ sin²∅ + cos²∅ = 1 ] .
⇒ 4 sin²∅ + 3 = 4 .
⇒ 4 sin²∅ = 4 - 3 .
⇒ 4 sin²∅ = 1 .
⇒ sin²∅ = 1/4 .
⇒ sin ∅ = √(1/4) .
∴ sin ∅ = 1/2 .
But, sin 30° = 1/2 .
Then, sin ∅ = sin 30° .
Then, tan 30° = 1/√3 .
Hence, it is proved .
Similar questions
English,
8 months ago
Math,
8 months ago
Computer Science,
8 months ago
Math,
1 year ago
World Languages,
1 year ago
Math,
1 year ago