Math, asked by vigi47, 1 year ago

if tan theta=4/3, find the value of 1-sin theta / 1 + sin theta

Answers

Answered by nihaalnz
22

Answer:

1/9

Step-by-step explanation:

Tan∅ = Opposite / Adjacent Side

Tan∅ = 4/5

SUBSTITUTE THIS IN A TRIANGLE

By using Pythagoras theorem,

AC²=AB²+BC²

AC²=4²+3²

AC²=16+9

AC²=25

AC=5

NOW,

sin∅  =  Opposite Side / Hypotenuse

        = 4/5

Therefore,

1-sin∅ / 1+sin∅

= 1 - 4/3 / 1 + 4/3

= 1/9





nihaalnz: no t4/3 its 4/5
nihaalnz: so 1 - 4/5 / 1 + 4/5 = 1/9
vigi47: धन्यवाद
Answered by rizwan35
11

since \:  \tan( \alpha )  =  \frac{perpendicular}{base}
therefore \:  \frac{perpendicular}{base}  =  \frac{4}{3}
thus \: perependicular = 4 \: and \: base = 3
therefore by Pythagoras theorem
(hypotenuse) {}^{2}  = (perpendicular) {}^{2}  + (base) {}^{2}
let hypotenuse is h, perpendicular is p and base of a triangle is b

therefore \: h {}^{2}  = 4 {}^{2}  + 3 {}^{2}
 = 16 + 9 = 25
h =  \sqrt{25}  = 5
therefore \:  \sin( \alpha )  =  \frac{p}{h}  =  \frac{4}{5}
  = \frac{1 -  \sin( \alpha ) }{1 +  \sin( \alpha ) }  =  \frac{1 -  \frac{4}{5} }{1 +  \frac{4}{5} }
 =  \frac{1}{9}

vigi47: धन्यवाक्स
vigi47: i mean धन्यवाद
rizwan35: welcome
Similar questions