Math, asked by mariecurie26, 6 hours ago

if tan theta -4/tan theta =3 then sin^2 theta is​

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\tt{tan(\theta)-\dfrac{4}{tan(\theta)}=3}

\tt{\implies\,\dfrac{tan^2(\theta)-4}{tan(\theta)}=3}

\tt{\implies\,tan^2(\theta)-4=3\,tan(\theta)}

\tt{\implies\,tan^2(\theta)-3\,tan(\theta)-4=0}

\tt{\implies\,tan^2(\theta)-4\,tan(\theta)+tan(\theta)-4=0}

\tt{\implies\,tan(\theta)(tan(\theta)-4)+1(tan(\theta)-4)=0}

\tt{\implies\,(tan(\theta)+1)(tan(\theta)-4)=0}

\tt{\implies\,tan(\theta)+1=0\,\,\,\,or\,\,\,\,tan(\theta)-4=0}

\tt{\implies\,tan(\theta)=-1\,\,\,\,or\,\,\,\,tan(\theta)=4}

\tt{\implies\,sec(\theta)=\sqrt{1+(-1)^2}\,\,\,\,or\,\,\,\,sec(\theta)=\sqrt{1+(4)^2}}

\tt{\implies\,sec(\theta)=\sqrt{2}\,\,\,\,or\,\,\,\,sec(\theta)=\sqrt{17}}

So,

\tt{\implies\,sin(\theta)=-\dfrac{1}{\sqrt{2}}\,\,\,\,or\,\,\,\,sin(\theta)=\dfrac{4}{\sqrt{17}}}

Answered by mathdude500
4

 \blue{\large\underline{\sf{Given- }}}

\rm :\longmapsto\:tan\theta  - \dfrac{4}{tan\theta } = 3

 \purple{\large\underline{\sf{To\:Find - }}}

\rm :\longmapsto\: {sin}^{2}\theta

  \green{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:tan\theta  - \dfrac{4}{tan\theta } = 3

We know,

\rm :\longmapsto\:\boxed{\tt{ tanx =  \frac{1}{cotx}}}

So, above can be rewritten as

\rm :\longmapsto\:\dfrac{1}{cot\theta }  - 4cot\theta  = 3

\rm :\longmapsto\:\dfrac{1 -  {4cot}^{2}\theta  }{cot\theta } = 3

\rm :\longmapsto\:1 -  {4cot}^{2}\theta  = 3cot\theta

\rm :\longmapsto\:{4cot}^{2}\theta +  3cot\theta  - 1 = 0

On splitting the middle terms, we get

\rm :\longmapsto\:{4cot}^{2}\theta +  4cot\theta - cot\theta   - 1 = 0

\rm :\longmapsto\:4cot\theta (cot\theta + 1) - 1(cot\theta  + 1) = 0

\rm :\longmapsto\:(4cot\theta - 1) (cot\theta + 1) = 0

\rm\implies \:cot\theta  =  \dfrac{1}{4}  \:  \: or \:  \: cot\theta  =  - 1

Now,

We consider first

\red{\rm\implies \:cot\theta  =  \dfrac{1}{4}}

Now, Consider

\rm :\longmapsto\: {sin}^{2}\theta

\rm \:  =  \: \dfrac{1}{ {cosec}^{2} \theta }

\rm \:  =  \: \dfrac{1}{1 +  {cot}^{2} \theta }

\rm \:  =  \: \dfrac{1}{1 +  {\bigg(\dfrac{1}{4} \bigg) }^{2} }

\rm \:  =  \: \dfrac{1}{1 + \dfrac{1}{16} }

\rm \:  =  \: \dfrac{16}{17}

\bf\implies \: \boxed{\bf{ {sin}^{2}\theta  =  \frac{16}{17} \: }}

Now, When

 \red{\rm :\longmapsto\:cot\theta  =  - 1}

Now, Consider

\rm :\longmapsto\: {sin}^{2}\theta

\rm \:  =  \: \dfrac{1}{ {cosec}^{2} \theta }

\rm \:  =  \: \dfrac{1}{1 +  {cot}^{2} \theta }

\rm \:  =  \: \dfrac{1}{1 +  {\bigg( - 1 \bigg) }^{2} }

\rm \:  =  \: \dfrac{1}{1 + 1}

\rm \:  =  \: \dfrac{1}{2}

\bf\implies \: \boxed{\bf{ {sin}^{2}\theta  =  \frac{1}{2} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions