Math, asked by Aartikumari1, 1 year ago

if tan theta = a/b prove that {(a sin theta) -(b cos theta )}/{(a sin theta) +(b cos theta )}=( a²-b²)/(a²+b²)

plzz
help.me
anyone

Answers

Answered by abhay022
216
I give you 2 methods ..take a look
Attachments:

Aartikumari1: achha oo haha sorry
Aartikumari1: aa gye samjh m
Aartikumari1: thank u
Aartikumari1: bye
abhay022: welcome dear
abhay022: bye
Aartikumari1: ek or question solve kar doge plzz
Aartikumari1: wait i ask there
abhay022: ok
abhay022: question ki link msg kar dena ...
Answered by ColinJacobus
89

Answer:  The proof is done below.

Step-by-step explanation:  We are given the following :

\tan\theta=\dfrac{a}{b}.

We are to prove the following relation :

\dfrac{a\sin\theta-b\cos\theta}{a\sin\theta+b\cos\theta}=\dfrac{a^2-b^2}{a^2+b^2}.

We will be using the following trigonometric formula :

\dfrac{\sin A}{\cos A}=\tan A.

We have

L.H.S.\\\\\\=\dfrac{a\sin\theta-b\cos\theta}{a\sin\theta+b\cos\theta}\\\\\\=\dfrac{\dfrac{a\sin\theta-b\cos\theta}{\cos\theta}}{\dfrac{a\sin\theta+b\cos\theta}{\cos\theta}}~~~~~~~~~~~~~~[\textup{dividing both nemerator and denominator by }\cos\theta]\\\\\\=\dfrac{a\dfrac{\sin\theta}{\cos\theta}-b}{a\dfrac{\sin\theta}{\cos\theta}+b}\\\\\\=\dfrac{a\tan\theta-b}{a\tan\theta+b}\\\\\\=\dfrac{a\times\dfrac{a}{b}-b}{a\times\dfrac{a}{b}+b}\\\\\\=\dfrac{\dfrac{a^2-b^2}{b}}{\dfrac{a^2+b^2}{b}}\\\\\\=\dfrac{a^2-b^2}{a^2+b^2}\\\\=R.H.S.

Hence proved.

Similar questions