Math, asked by sumanth610, 1 year ago

If tan theta =a/b, prove that asin2theta + bcos2theta=b

Answers

Answered by lazor
43
i hope it helps u.......
Attachments:
Answered by pinquancaro
44

Answer and Explanation:

Given : \tan \theta =\frac{a}{b}

To prove : a\sin 2\theta+b\cos 2\theta=b

Solution :

Taking LHS,

LHS=a\sin 2\theta+b\cos 2\theta

Using formula,

\sin 2x=\frac{2\tan x}{1+\tan^2x} and \cos 2x=\frac{1-\tan^2x}{1+\tan^2x}

LHS=a(\frac{2\tan \theta}{1+\tan^2\theta})+b(\frac{1-\tan^2\theta}{1+\tan^2\theta})

Substitute, \tan \theta =\frac{a}{b}

LHS=a(\frac{2(\frac{a}{b})}{1+(\frac{a}{b})^2})+b(\frac{1-(\frac{a}{b})^2}{1+(\frac{a}{b})^2})

LHS=a(\frac{\frac{2a}{b}}{\frac{b^2+a^2}{b^2}})+b(\frac{\frac{b^2-a^2}{b^2}}{\frac{b^2+a^2}{b^2}})

LHS=a(\frac{2a}{b}\times \frac{b^2}{b^2+a^2})+b(\frac{b^2-a^2}{b^2}\times\frac{b^2}{b^2+a^2})

LHS=\frac{2a^2b}{b^2+a^2}+\frac{b^3-a^2b}{b^2+a^2}

LHS=\frac{2a^2b+b^3-a^2b}{b^2+a^2}

LHS=\frac{a^2b+b^3}{b^2+a^2}

LHS=\frac{b(a^2+b^2)}{b^2+a^2}

LHS=b

LHS=RHS

Hence proved.

Similar questions