Math, asked by xyz99, 1 year ago

if tan theta= cos2 alpha , prove that sin 2 theta =(1- tan4 alpha) / (1+tan4 alpha)

Answers

Answered by jaggu18
8
your answer for above question
Attachments:
Answered by sandy1816
0

given

tan \theta = cos 2 \alpha

We know

sin2 \theta =  \frac{2tan \theta}{1 +  {tan}^{2} \theta }  \\  \\  =  \frac{2cos2 \alpha }{1 +  {cos}^{2}2 \alpha  }  \\  \\  =  \frac{2 \frac{1 -  {tan}^{2}  \alpha }{1 +  {tan}^{2}  \alpha } }{1 +  \frac{(1 -  {tan}^{2} \alpha) ^{2}   }{(1 +  {tan}^{2} \alpha ) ^{2}  } }  \\  \\  =  \frac{2(1 -  {tan}^{2}  \alpha )(1 +  {tan}^{2} \alpha ) }{( {1 +  {tan}^{2} \alpha ) }^{2} +(1 -  {tan}^{2}  \alpha ) ^{2}   }  \\  \\  =  \frac{2( 1 -  {tan}^{4} \alpha ) }{2(1 +  {tan}^{4} \alpha ) }  \\  \\  =  \frac{1 -  {tan}^{4 }  \alpha }{1 +  {tan}^{4} \alpha  }

Similar questions