Math, asked by annapoornanagareddyn, 3 months ago

If tan theta +cot theta=3, prove that tan 4theta +cot 4 theta =47.​

Answers

Answered by vipashyana1
1

Answer:

tanθ+cotθ=3 \\ Squring \: on \: both \: the \: sides \\  {(tanθ + cotθ)}^{2}  =  {(3)}^{2}  \\  {(tanθ)}^{2}  +  {(cotθ)}^{2}  + 2(tanθ)(cotθ) = 9 \\  {tan}^{2} θ  +  {cot}^{2} θ + 2 \times tanθ \times  \frac{1}{tanθ}  = 9 \\  {tan}^{2}  +  {cot}^{2} θ + 2 = 9 \\  {tan}^{2} θ +  {cot}^{2} θ = 9 - 2 \\  {tan}^{2}θ  +  {cot}^{2} θ = 7 \\ Squaring \: on \: both \: the \: sides \\  {( {tan}^{2} θ +  {cot}^{2} θ)}^{2}  =  {(7)}^{2}  \\  {( {tan}^{2}θ )}^{2}  +  { {(cot}^{2} θ)}^{2}  + 2( {tan}^{2} θ)( {cot}^{2} θ) = 49 \\  {tan}^{4} θ +  {cot}^{4} θ + 2 \times  {tan}^{2} θ \times  \frac{1}{ {tan}^{2}θ }  = 49 \\  {tan}^{4} θ +  {cot}^{4} θ + 2 = 49 \\  {tan}^{4} θ +  {cot}^{4} θ = 49 - 2 \\  {tan}^{4} θ +  {cot}^{4} θ = 47 \\ Hence \: proved


annapoornanagareddyn: tq
Similar questions