Math, asked by ishneetkaur56, 1 year ago

If tan theta-cot theta= 3, then prove that tan² theta + cot² theta= 11

Answers

Answered by Anonymous
10

Step-by-step explanation:

tanA - cotA = 3

Squaring on both sides

(tanA - cotA)² = (3)²

tan²A + cot²A - 2(tanA)(cotA) = 9

tan²A + cot²A - 2(tanA)(1/tanA) = 9

tan²A + cot²A - 2 = 9

tan²A + cot²A = 9 + 2

tan²A + cot²A = 11.

Answered by xxxmysterxxx
2

Answer:

Answer:

\begin{gathered}Value \: of \\ tan^{2}\theta+cot^{2}\theta = 2\end{gathered}

Valueof

tan

2

θ+cot

2

θ=2

Step-by-step explanation:

Given \: tan\theta+cot\theta=2\:---(1)Giventanθ+cotθ=2−−−(1)

/* On Squaring both sides of the equation, we get

\left(tan\theta+cot\theta\right)^{2}=2^{2}(tanθ+cotθ)

2

=2

2

\implies tan^{2}\theta+cot^{2}\theta+2 tan\theta cot\theta = 4⟹tan

2

θ+cot

2

θ+2tanθcotθ=4

\implies tan^{2}\theta+cot^{2}\theta+2 \times 1 = 4⟹tan

2

θ+cot

2

θ+2×1=4

/* tanAcotA = 1 */

\implies tan^{2}\theta+cot^{2}\theta = 4-2⟹tan

2

θ+cot

2

θ=4−2

\implies tan^{2}\theta+cot^{2}\theta = 2⟹tan

2

θ+cot

2

θ=2

Therefore,

tan^{2}\theta+cot^{2}\theta = 2tan

2

θ+cot

2

θ=2

•••♪

Similar questions