If tan theta + cot theta =a, sec theta+ cos theta=b , show in terms without theta
Answers
Answered by
1
Answer:
Step-by-step explanation:
Report by Triptibandhu1925 17.02.2019
Answer:
Step-by-step explanation:
Tanθ−cotθ=a
cosθ+sinθ=b
show that (a² + 4)(b² − 1)² = 4
(a² + 4) = (Tanθ−cotθ)² + 4
=> tan²θ + cot²θ - 2tanθ.cotθ + 4
=>tan²θ + cot²θ - 2 + 4 (tanθ.cotθ = 1)
=>tan²θ + cot²θ +2
=> (tan²θ + 1) + (cot²θ + 1)
=> sec²θ + cosec²θ
=>1/cos²θ + 1/sin²θ
=>sin²θ+cos²θ/cos²θ.sin²θ
=>1/cos²θ.sin²θ
(b² − 1) = (cosθ+sinθ)² -1
=> cos²θ + sec²θ +2cosθ sinθ -1
=> 1+2cosθ sinθ -1
=> 2cosθ sinθ
(b² − 1)² = (2cosθ sinθ)²
=>4cos²θ.sin²θ
(a² + 4)(b² − 1)²
=> (1/cos²θ.sin²θ)(4cos²θ.sin²θ)
=. 1x4 = 4 (ANS)
Please mark it as the brainliest if it helped u ☺️
Similar questions