Math, asked by racharla7108, 11 months ago

If tan theta equals to 4 then find the value of 7 sin theta minus 3 cos theta divided by 7 sin theta + 3 cos theta

Answers

Answered by kiran12355
5

Step-by-step explanation:

answer as shown above.....answer=25/31

Attachments:
Answered by harendrachoubay
4

\dfrac{7\sin \theta-3\cos \theta}{7\sin \theta+3\cos \theta} =\dfrac{25}{31}

Step-by-step explanation:

We have,

\tan \theta =4

To find, the value of \dfrac{7\sin \theta-3\cos \theta}{7\sin \theta+3\cos \theta} = ?

\dfrac{7\sin \theta-3\cos \theta}{7\sin \theta+3\cos \theta}

Dividing numerator and denominator by \cos \theta, we get

=\dfrac{7\dfrac{\sin \theta}{\cos \theta} -3\dfrac{\cos \theta}{\cos \theta} }{7\dfrac{\sin \theta}{\cos \theta} +3\dfrac{\cos \theta}{\cos \theta}}

=\dfrac{7\tan \theta-3}{7\tan \theta+3}

Put \tan \theta =4, we get

=\dfrac{7(4)-3}{7(4)+3}

=\dfrac{28-3}{28+3}

=\dfrac{25}{31}

\dfrac{7\sin \theta-3\cos \theta}{7\sin \theta+3\cos \theta} =\dfrac{25}{31}

Similar questions