Math, asked by sejpaldipen26, 10 months ago

if tan theta equals to a /b prove that aSin theta minus b cos theta divided by asin theta + b cos theta equals to a square minus b square divided by a square + b square ​

Answers

Answered by Diabolical
2

Step-by-step explanation:

We have given that,

                                 Tan Θ = a / b;                          (i)

We asked to prove that,

                                 (a sinΘ - b cosΘ) / (a sin Θ + b cosΘ) = \frac{ a^{2} - b^{2} }{ a^{2} + b^{2} }.     (ii)

So, divide the numerator and the denominator by cos Θ of the LHS of equation (ii);

                               ⇒ {(a sinΘ - b cosΘ) / cosΘ } / {(a sin Θ + b cosΘ) / cosΘ}

∴As we know that when divide any number both in the numerator and denominator on a fraction then its value will be equal.

Hence, this will give us,

                              ⇒  {a tan Θ - b}  /  {a tan Θ + b};      (iii)

Now, put the value of Tan Θ in equation (iii) from equation (ii),

                               ⇒{a * a/b - b}  /  {a * a/b  +  b};

                               ⇒{a^{2} / b  -  b}  /   {a^{2} / b  + b} ;

                               ⇒ {(a^{2} - b^{2}) / b }  /  {(a^{2} + b^{2}) / b }  

From here b will cancel out,

Therefore,                 ⇒ (a^{2} - b^{2})   /  (a^{2} + b^{2});

                             ⇒ \frac{ a^{2} - b^{2} }{ a^{2} + b^{2} }.

Hence, proved.

That's all

Answered by ItzRadhika
7

Refers to attachment ~

Attachments:
Similar questions