Math, asked by prabhatagrahari1589, 1 year ago

If tan theta minus cot theta equal to a and cos theta + sin theta equal to b prove that a square + 4 into b square minus 1 whole square equal to 4

Answers

Answered by 123abc22
27

Step-by-step explanation:

Hey!!

Hope it helps....

Attachments:
Answered by smithasijotsl
2

Answer:

Step-by-step explanation:

Given,

tan \theta -  cot \theta  = a and cos \theta +sin\theta  = b

Required to prove

(a² + 4) (b² - 1)² = 4

Recall the formula

tan\theta = \frac{1}{cot\theta}

sin^2\theta+ cos^2\theta = 1

Solution:

We have a = tan \theta -  cot \theta

a² = (tan \theta -  cot \theta)^2

= tan^2\theta +cot^2\theta  -2tan\theta cot\theta

=tan^2\theta +cot^2\theta  -2 (since tan\theta = \frac{1}{cot\theta})

a² + 4 = tan^2\theta +cot^2\theta  +2

Again we have

b = cos\theta +sin\theta

b² = (cos\theta+sin\theta)^2

= cos^2\theta+sin^2\theta+2sin\theta cos\theta ( since sin^2\theta+ cos^2\theta = 1)

= 1+2sin\theta cos\theta

b² - 1 = 2sin\theta \cos\theta

(b² - 1)² = 4sin^2\theta\cos^2\theta

LHS = (a² + 4) (b² - 1)² = (tan^2\theta +cot^2\theta  +2)4sin^2\theta cos^2\theta

= (\frac{sin^2\theta}{cos^\theta}  +\frac{cos^2\theta}{sin^\theta}   +2)4sin^2\theta cos^2\theta

= 4sin^4\theta+ 4cos^4\theta+8sin^2\theta cos^2\theta

=4(sin^4\theta+ 4cos^4\theta+2sin^2\theta cos^2\theta)

=4(sin^2\theta+ cos^2\theta)^2(sincesin^2\theta+ cos^2\theta = 1)

=4

= RHS

(a² + 4) (b² - 1)² = 4

Hence proved

#SPJ3

Similar questions