Math, asked by deval8948, 1 year ago

If tan theta =p/q then find the value of p sin theta-q cos theta divide p sin theta +q sin theta

Answers

Answered by pulakmath007
65

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

\displaystyle \sf{ \tan \theta =  \frac{p}{q} }

TO DETERMINE

\displaystyle \sf{ \frac{p \sin \theta - q \cos \theta}{ p \sin \theta  +  q \cos \theta} }

CALCULATION

\displaystyle \sf{ \frac{p \sin \theta - q \cos \theta}{ p \sin \theta  +  q \cos \theta} }

 \sf{Dividing \:  numerator \:  and \:  denominator \:  both  \: by  \: \cos \theta }

 = \displaystyle \sf{ \frac{p  \:  \frac{\sin \theta}{\cos \theta}  - q\:  \frac{\cos \theta}{\cos \theta}  }{ p  \:  \frac{\sin \theta}{\cos \theta}   +  q\:  \frac{\cos \theta}{\cos \theta} } }

 = \displaystyle \sf{ \frac{p \tan \theta - q }{ p \tan \theta  +  q } }

 = \displaystyle \sf{ \frac{p  \times  \frac{p}{q}  - q }{ p  \times  \frac{p}{q}  +  q } }

 = \displaystyle \sf{ \frac{ \frac{ {p}^{2}  -  {q}^{2} }{q}   }{  \frac{ {p}^{2}   +  {q}^{2} }{q}  }}

 = \displaystyle \sf{ \frac{ { {p}^{2}  -  {q}^{2} } }{  {p}^{2}   +  {q}^{2}   }}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find the value of

(1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

Answered by ramreddyt21
21

HOPE THIS HEPLS TOU

PLS MARK ME AS A BRAINLIST

Attachments:
Similar questions