If (tan theta+sin theta)=m and (tan theta- sin theta) =n prove that ( m^2-n^2)^2=16mn
Answers
Answered by
186
Tan θ + sinθ = m Squaring on both sides& Tan θ - Sin θ = n Squaring on both sides we get
prove that (m2 - n2)²=16mn
Tan2 θ + sin2 θ + 2 Tan θ sinθ = m2 ---------(1)
Tan2 θ + sin2 θ - 2 Tan θ sinθ = n2 --------(2)
Substract (2) from (1) we get
m2 - n2 = 4 Tan θ sinθ = 4 √( Tan2 θ sin2 θ)
= 4 √( Sin2 θ /Cos2 θ ( 1 - Cos2 θ) )
= 4 √( Tan2 θ - sin2 θ)
= 4 √( Tan θ + Sin θ)(Tan θ - Sin θ )
m2 - n2 = 4√mn ( on squaring both sides)
(m2-n2)²=16mn
prove that (m2 - n2)²=16mn
Tan2 θ + sin2 θ + 2 Tan θ sinθ = m2 ---------(1)
Tan2 θ + sin2 θ - 2 Tan θ sinθ = n2 --------(2)
Substract (2) from (1) we get
m2 - n2 = 4 Tan θ sinθ = 4 √( Tan2 θ sin2 θ)
= 4 √( Sin2 θ /Cos2 θ ( 1 - Cos2 θ) )
= 4 √( Tan2 θ - sin2 θ)
= 4 √( Tan θ + Sin θ)(Tan θ - Sin θ )
m2 - n2 = 4√mn ( on squaring both sides)
(m2-n2)²=16mn
Answered by
214
hope it will be helpful to you all
Attachments:
Similar questions