Math, asked by Smrana8keBhagna, 1 year ago

If tan theta + sin theta = m and tan theta - sin theta = n , show that m square - n square = 4 √ mn

Answers

Answered by ARoy
2292
tanθ+sinθ=m
tan
θ-sinθ=n
∴, m+n=tanθ+sinθ+tanθ-sinθ=2tanθ
m-n=tanθ+sinθ-tanθ+sinθ=2sinθ
mn=(tan
θ+sinθ)(tanθ-sinθ)
     =tan²θ-sin²θ
∴, m²-n²
=(m+n)(m-n)
=2tan
θ.2sinθ
=4sin
θtanθ
4
√mn
=4√(tan²θ-sin²θ)
=4√(sin²θ/cos²θ-sin²θ)
=4√sin²θ(1/cos²θ-1)
=4sinθ√(1-cos²θ)/cos²θ
=4sinθ/cosθ√sin²θ [∵, sin²θ+cos²θ=1]
=4sin
θtanθ
∴, LHS=RHS (proved)
Answered by reemaanver999
1132

Here's the solution to your query..!

Attachments:
Similar questions