Math, asked by meenadevii, 1 year ago

IF TAN THETA +SIN THETA =M AND TAN THETA -SINTHETA =N THEN PROVE M^2-N^2=4ROOTMN

Answers

Answered by nitthesh7
2
Let A = theta

Given as m=tan A+sinA and n= tanA-sinA now squaring them and subtratcing it is given also,m2-n2= (tan A+sinA)2-( tanA-sinA)2 =4tanA.SinA1 mn= (tan A+sinA) (tanA-sinA) mn=tan2A-Sin2A mn= Sin2A(1/Cos2A-1) mn= Sin2A(1-Cos2A/Cos2A) mn= Sin2A(Sin2A/Cos2A) mn=Sin2A. tan2A sqrt(mn)=SinA.tanA2 from 1, m2-n2=4tanA.SinA from 2, m2-n2=4sqrt(mn) 

:) Hope this Helps !!!

PLS SUPPORT SYRIANS
LOOK AT THEIR DIFFICULTIES IN GOOGLE 
LETS SUPPORT SYRIANS
LET THE SUPPORT OF INDIA START FROM US 

add the above statement in ur ques and ans
Answered by Shivam111ggv
2
adding both eqn. we get 2tantheta=M+N and 2sintheta=M-N
multiplying both
M^2-N^2=4tantheta×sintheta
MN=tan^2theta-sin^theta
MN=(sin^theta-cos^theta×sin^2theta)/cos^theta
MN=[sin^theta(1-cos^theta)]/cos^theta
MN=[sin^theta×sin^theta]/cos^theta
MN=tan^theta×sin^theta
root MN =tantheta×sintheta
from above we have
M^2-N^2=4tantheta×sintheta and
as root MN =tantheta×sintheta
M^2-N^2=4root MN
Similar questions