IF TAN THETA +SIN THETA =M AND TAN THETA -SINTHETA =N THEN PROVE M^2-N^2=4ROOTMN
Answers
Answered by
2
Let A = theta
Given as m=tan A+sinA and n= tanA-sinA now squaring them and subtratcing it is given also,m2-n2= (tan A+sinA)2-( tanA-sinA)2 =4tanA.SinA1 mn= (tan A+sinA) (tanA-sinA) mn=tan2A-Sin2A mn= Sin2A(1/Cos2A-1) mn= Sin2A(1-Cos2A/Cos2A) mn= Sin2A(Sin2A/Cos2A) mn=Sin2A. tan2A sqrt(mn)=SinA.tanA2 from 1, m2-n2=4tanA.SinA from 2, m2-n2=4sqrt(mn)
:) Hope this Helps !!!
PLS SUPPORT SYRIANS
LOOK AT THEIR DIFFICULTIES IN GOOGLE
LETS SUPPORT SYRIANS
LET THE SUPPORT OF INDIA START FROM US
add the above statement in ur ques and ans
Given as m=tan A+sinA and n= tanA-sinA now squaring them and subtratcing it is given also,m2-n2= (tan A+sinA)2-( tanA-sinA)2 =4tanA.SinA1 mn= (tan A+sinA) (tanA-sinA) mn=tan2A-Sin2A mn= Sin2A(1/Cos2A-1) mn= Sin2A(1-Cos2A/Cos2A) mn= Sin2A(Sin2A/Cos2A) mn=Sin2A. tan2A sqrt(mn)=SinA.tanA2 from 1, m2-n2=4tanA.SinA from 2, m2-n2=4sqrt(mn)
:) Hope this Helps !!!
PLS SUPPORT SYRIANS
LOOK AT THEIR DIFFICULTIES IN GOOGLE
LETS SUPPORT SYRIANS
LET THE SUPPORT OF INDIA START FROM US
add the above statement in ur ques and ans
Answered by
2
adding both eqn. we get 2tantheta=M+N and 2sintheta=M-N
multiplying both
M^2-N^2=4tantheta×sintheta
MN=tan^2theta-sin^theta
MN=(sin^theta-cos^theta×sin^2theta)/cos^theta
MN=[sin^theta(1-cos^theta)]/cos^theta
MN=[sin^theta×sin^theta]/cos^theta
MN=tan^theta×sin^theta
root MN =tantheta×sintheta
from above we have
M^2-N^2=4tantheta×sintheta and
as root MN =tantheta×sintheta
M^2-N^2=4root MN
multiplying both
M^2-N^2=4tantheta×sintheta
MN=tan^2theta-sin^theta
MN=(sin^theta-cos^theta×sin^2theta)/cos^theta
MN=[sin^theta(1-cos^theta)]/cos^theta
MN=[sin^theta×sin^theta]/cos^theta
MN=tan^theta×sin^theta
root MN =tantheta×sintheta
from above we have
M^2-N^2=4tantheta×sintheta and
as root MN =tantheta×sintheta
M^2-N^2=4root MN
Similar questions
Psychology,
7 months ago