If tan theta= x-1/4x,then sec theta - tan theta=
Answers
Given: tanθ = x - 1/4x
To find: The value of secθ - tanθ.
Solution:
- We have given tanθ = x - 1/4x, so:
tanθ = ( 4x² - 1 ) / 4x
- We know that sec²θ = 1 + tan²θ
- So:
sec²θ = 1 + (( 4x²- 1 ) / 4x)²
sec²θ = ( 16x² + 16x^4 - 8x² ) / 16x²
- We can write it in simplified form as:
sec²θ = (4x² + 1)² / (4x)²
secθ = ±( 4x² + 1 ) / 4x
- So now putting values in secθ - tanθ, we get:
- If secθ is positive, then :
secθ - tanθ = ( 4x² + 1 ) / 4x - ( 4x² - 1 ) / 4x
secθ - tanθ = 4x² + 1 - 4x² + 1 / 4x
secθ - tanθ = 2/4x
secθ - tanθ = 1/2x
- If secθ is negative, then :
secθ - tanθ = -( 4x² + 1 ) / 4x - ( 4x² - 1 ) / 4x
secθ - tanθ = -4x² - 1 - 4x² + 1 / 4x
secθ - tanθ = -8x²/4x
secθ - tanθ = -2x
Answer:
So the value of secθ - tanθ is 1/2x and -2x.