if tan tita + cot tita = 2sin^2 tita + 2cos^2 tita then find tan^4 tita + cot^4 tita
Answers
Answered by
1
Tan + cot = 2 sin^2 + 2cos^2
Tan + cot = 2 (sin^2 + cos^2)
Tan + cot = 2
on squaring both side
(tan + cot)^2 = 4
tan^2 + cot^2 + 2×tan×cot = 4
tan^2 + cot^2 = 4-2
tan^2 + cot^2 = 2
Again squaring both side
(tan^2 + cot^2)^2 = 4
tan^4 + cot^4 + 2×tan^2 × cot^2 = 4
tan^4 + cot^4 + 2 =4
tan^4 + cot^4 = 2
please mark it brainliest. ..
Tan + cot = 2 (sin^2 + cos^2)
Tan + cot = 2
on squaring both side
(tan + cot)^2 = 4
tan^2 + cot^2 + 2×tan×cot = 4
tan^2 + cot^2 = 4-2
tan^2 + cot^2 = 2
Again squaring both side
(tan^2 + cot^2)^2 = 4
tan^4 + cot^4 + 2×tan^2 × cot^2 = 4
tan^4 + cot^4 + 2 =4
tan^4 + cot^4 = 2
please mark it brainliest. ..
Similar questions