If tan x + sin x =m and tan x - sin x =n
show that
Answers
Answered by
24
this the answer for that
Attachments:
Answered by
0
L.H.S=m²-n²
=(tan x +sin x )² - (tan x - sin x)²
= tan²x + sin²x+2tanx.sinx -[tan²x + sin²x -2tanx.sinx]
=4tanx.sinx
R.H.S= 4√(mn)
=4√[(tanx+sinx)(tanx-sinx)]
=4√[tan²x-sin²x]
=4√[(sin²x/cos²x)-sin²x]
=4√[{sin²x-sin²x.cos²x}/cos²x]
=4√[{sin²x(1-cos²x)}/cos²x]
=4√[{sin²x.sin²x}/cos²x]
=4√[tan²x.sin²x]
=4tanx.sinx
therefore, L.H.S=R.H.S
Similar questions