if tan x = tan y,then the value of sin(x+y)/sin(x-y) is
Answers
Step-by-step explanation:
Given trigonometric equation is,
\textbf{sin(x+y) / sin(x-y) = (a+b) / (a-b)}sin(x+y) / sin(x-y) = (a+b) / (a-b)
We know the componendo and dividendo property, that is,
\textbf{if a/b = c/d,}if a/b = c/d,
\textbf{then (a+b) / (a-b) = (c+d) / (c-d)}then (a+b) / (a-b) = (c+d) / (c-d)
So by applying this componendo and dividendo property in the given trigonometric equation,
{sin(x+y) + sin(x-y)} / {sin(x+y) - sin(x-y)} = (a+b+a-b)/a+b-a+b) -------(1)
We know that,
\textbf{sin A+sin B = 2 sin(A+B)/2 . cos(A-B)/2}sin A+sin B = 2 sin(A+B)/2 . cos(A-B)/2
&
\textbf{sin A-sin B = 2cos(A+B)/2 . sin(A-B)/2}sin A-sin B = 2cos(A+B)/2 . sin(A-B)/2
Using above formula in the given equation (1),
{2 sin (x+y+x-y)/2 . cos (x+y-x+y)/2} / {2 cos (x+y+x-y)/2 . sin (x+y-x+y)/2} = 2a / 2b
=> 2 sin x . cos y / 2 cos x . sin y = a/b
=> (sin x / cos x)(cos y / sin y) = a/b
=> tan x . cot y = a/b
We know that cot y = 1 / tan y
=> tan x / tan y = a/b
\textbf{So the value of tanx/tany is a/b}So the value of tanx/tany is a/b
\textbf{Hope It Helps}Hope It Helps