if tan15°=X, then
prove that, x² - 2√3 -1 = 0
please...
Attachments:
Answers
Answered by
2
Answer:
x² + 2√3 x - 1 = 0
Step-by-step explanation:
Given tan15° = x
from the properties of trigonometric ratios :
tan30° = 1 / 3
tan( 2A ) = 2tanA / ( 1 - tan²A )
⇒ tan( 30° ) = 1 / √3
⇒ tan( 2*15° ) = 1 / √3
⇒ 2tan15° / ( 1 - tan²15° ) = 1 / √3
tan15° = x as given
⇒ 2x / ( 1 - x² ) = 1 / √3
⇒ 2x * √3 = 1( 1 - x² )
⇒ 2√3 x = 1 - x²
⇒ x² + 2√3 x - 1 = 0
Proved.
Similar questions