If tan²θ = 1 - a² , prove that secθ + tan³θcosecθ = ( 2 - a²)^3/2
Answers
Answered by
3
Given, sec theta+tan^3 theta cosec theta can be written as
=root (1+tan^2theta) + tan^2 theta * tan theta * root (1+cot^2 theta)
(Given tan^2 theta = 1 - a^2)
= root 1+(1-a^2)+(1-a^2) * root (1-a^2) * root (1+(1/tan^2 theta))
= root (2-a^2) + (1-a^2) * root (1-a^2) * root (1+1/(1-a^2))
= root(2-a^2)+(1-a^2) * root (2-a^2)
=root (2-a^2) * (1+1-a^2)
=root (2-a^2) * (2-a^2)
=(2-a^2)^1/3
=(2-a^2)^3/2
Hope this helps!
=root (1+tan^2theta) + tan^2 theta * tan theta * root (1+cot^2 theta)
(Given tan^2 theta = 1 - a^2)
= root 1+(1-a^2)+(1-a^2) * root (1-a^2) * root (1+(1/tan^2 theta))
= root (2-a^2) + (1-a^2) * root (1-a^2) * root (1+1/(1-a^2))
= root(2-a^2)+(1-a^2) * root (2-a^2)
=root (2-a^2) * (1+1-a^2)
=root (2-a^2) * (2-a^2)
=(2-a^2)^1/3
=(2-a^2)^3/2
Hope this helps!
Similar questions
Science,
8 months ago
English,
8 months ago
Computer Science,
8 months ago
Environmental Sciences,
1 year ago