if,
tan²A= 1+ 2 tan²B.
Then prove, 2sin²A = 1 +sin^2 B
Answers
Answered by
1
Step-by-step explanation :
Given :
tan²A = 1 + 2tan²B
To prove :
2sin²A = 1 + sin²B
Answer :
_________________________
_________________________
Some identities :
- sin² A + cos² A = 1
- 1+tan² A = sec² A
- 1+cot² A = cosec² A
- sin (x+y) = sin(x)cos(y) + cos(x)sin(y)
- cos(x+y) = cos(x)cos(y) – sin(x)sin(y)
- tan(x+y) = (tan x + tan y) / [ (1−tan x)(tan y) ]
- sin(x–y) = sin(x)cos(y) – cos(x)sin(y)
- cos(x–y) = cos(x)cos(y) + sin(x)sin(y)
- tan(x−y) = (tan x–tan y) / [ (1+tan x)( tan y) ]
Similar questions