If tan3a/tana = k , prove that sin3a/sina = 2k/ k - 1 and hence deduce that either k > 3 or k < 1/3?
Answers
Answered by
16
Tan3a/Tana=k
=> 3tana-tan^3a/tana-3tan^3a = k
=> 3-tan^2a/1-3tan^2a = k
=> tan^2a = a-3/3a-1
=> tana = root of a-3/3a-1
Tana= opp/adj
Hypotenuse = root of 4a-4
Sina = root of a-3/root of 4a-4
Now simplify sin3a/sina
Sin3a/sina = 3sina - 4sin^3a/sina
=> 3-4sin^2a
=> 3-4(a-3/4a-4)
=> 3-(a-3/a-1)
=> 3a-3-a+3/a-1
=> 2a/a-1
kartheekkalerupaf1uk:
Tan3a/Tana=k find Sin3a/Sina
Answered by
40
HELLO DEAR,
2k = 2tan3A/tanA
k - 1 = (tan3A/tanA) - 1 = (tan3A-tanA)/tanA
Hence,
2k/(k-1) = 2tan3A/(tan3A - tanA)
= 2tan3Acos3A/[cos3A (tan3A-tanA)]
= 2sin3A/[sin3A - tanA (4cos^3 A - 3cosA)]
= 2sin3A/(3sinA - 4sin^3 A - 4sinAcos^2 A + 3sinA)
=2sin3A/[sinA (3 - 4sin^2 A - 4cos^2 A + 3)]
= 2sin3A/[sinA {6-4 (sin^2 A + cos^2 A)}]
= 2sin3A/[sinA (6-4)]
= 2sin3A/2sinA= sin3A/sinA
Hence,
sin3A/sinA = 2k/(k-1)
Or,
(3sinA - 4sin^3 A)/sinA = 2k/(k-1)
Or,
3 - 4sin² A = 2k/(k-1)
Or, 4sin² A = 3 - 2k/(k-1)
= (k-3)/(k-1)
Or, sin^2 A = (k-3)/4 (k-1)
For 0 < (k-3)/4 (k-1), i.e., (k-3)/4 (k-1) > 0,
k-3> 0, k-1 > 0 or k-3 <0, k-1 <0Or, k> 3, k > 1 or k <3, k <1Or, k > 3 or k < 1.
(k-3)/4 (k-1) > 1
When k > 3,
(k-3) > 4 (k-1)Or, k-3 > 4k - 4Or, k - 4k > -4 + 3Or, -3k > -1Or, 3k < 1
Hence, k < 1/3
I HOPE ITS HELP YOU DEAR,
THANKS ♥️
2k = 2tan3A/tanA
k - 1 = (tan3A/tanA) - 1 = (tan3A-tanA)/tanA
Hence,
2k/(k-1) = 2tan3A/(tan3A - tanA)
= 2tan3Acos3A/[cos3A (tan3A-tanA)]
= 2sin3A/[sin3A - tanA (4cos^3 A - 3cosA)]
= 2sin3A/(3sinA - 4sin^3 A - 4sinAcos^2 A + 3sinA)
=2sin3A/[sinA (3 - 4sin^2 A - 4cos^2 A + 3)]
= 2sin3A/[sinA {6-4 (sin^2 A + cos^2 A)}]
= 2sin3A/[sinA (6-4)]
= 2sin3A/2sinA= sin3A/sinA
Hence,
sin3A/sinA = 2k/(k-1)
Or,
(3sinA - 4sin^3 A)/sinA = 2k/(k-1)
Or,
3 - 4sin² A = 2k/(k-1)
Or, 4sin² A = 3 - 2k/(k-1)
= (k-3)/(k-1)
Or, sin^2 A = (k-3)/4 (k-1)
For 0 < (k-3)/4 (k-1), i.e., (k-3)/4 (k-1) > 0,
k-3> 0, k-1 > 0 or k-3 <0, k-1 <0Or, k> 3, k > 1 or k <3, k <1Or, k > 3 or k < 1.
(k-3)/4 (k-1) > 1
When k > 3,
(k-3) > 4 (k-1)Or, k-3 > 4k - 4Or, k - 4k > -4 + 3Or, -3k > -1Or, 3k < 1
Hence, k < 1/3
I HOPE ITS HELP YOU DEAR,
THANKS ♥️
Similar questions