Math, asked by Cheshta, 1 year ago

If tanA= 1/2 , tanB=1/3. Using tan (A+B)= tanA
+tan B/1-tanA +tanB, Prove that (A+B)=45


Cheshta: answer please!

Answers

Answered by doraemondorami2
151
Given tanA = 1/2   and tanB = 1/3
 we know that 
tan(A+B) = (tanA + tanB)/1-tanA*tanB
tan(A+B) = (1/2+1/3)/(1-1/2*1/3)
               =(5/6)/(1-1/6)
             = (5/6)/(5/6)
              =1
tan (A+B)=tan 45                          ( since tan 45 = 1)
therefore A+B= 45
Answered by ssanskriti1107
0

Answer:

It is proved that A+B=45

Step by Step Explanation:

As we know     tan(A+B) =  \frac{ tanA + tanB}{1 - tanAtanB}

Step 1:

Given that     tanA = \frac{1}{2}    and   tanB = \frac{1}{3}

tan(A+B) =   \frac{ tanA + tanB}{1 - tanAtanB}

                  ={\Large } \frac{\frac{1}{2} + \frac{1}{3} }{1-\frac{1}{2}  \frac{1}{3} }

                  =\frac{5}{6} /\frac{5}{6}

                   =1

Step 2:

\thereforeA+B = 45

Hence proved.

#SPJ2

Similar questions