If tanA=1 in a right angled ABC: right angled at C, prove that
2 sin^A cos^A=1.
Answers
Given :-
In a right angled triangle ABC right angled at C and tan A = 1
Required To Prove:-
2 sin A cos A = 1
Solution :-
Given that
In a right angled triangle ABC right angled at C.
tan A = 1
=> tan A = tan 45°
=> A = 45°
Therefore, A = 45°
In taking LHS : 2 sin A cos A
=> LHS = 2 sin 45° cos 45°
=> LHS = 2 (1/√2)(1/√2)
=> LHS = 2(1/√2)²
=> LHS = 2(1/2)
=> LHS = 2/2
=> LHS = 1
=> LHS = RHS
Therefore, 2 sin A cos A = 1
Hence , Proved.
Used formulae:-
♦ sin 45° = 1/√2
♦ cos 45° = 1/√2
♦ tan 45° = 1
Given :
In a right angled triangle ABC right angled at C and tan A = 1
Required To Prove:
2 sin A cos A = 1
Solution :
Given that
In a right angled triangle ABC right
angled at C.
tan A = 1
=> tan A = tan 45º
=> A = 45°
Therefore, A = 45°
In taking LHS: 2 sin A cos A
=> LHS = 2 sin 45° cos 45º
=> LHS = 2 (1/√2)(1/-√2)
=> LHS = 2(1/√/2)²
=> LHS = 2(1/2)
=> LHS = 2/2
=> LHS = 1
=> LHS = RHS
Therefore, 2 sin A cos A = 1
Hence, Proved.
Used formulae:
sin 45º = 1/√2
cos 45º = 1/√2