Math, asked by abrar626, 1 year ago

if tanA=1/root3 find the value of sinA×cosB+cosA×sinB

Answers

Answered by amanmajhibgmailcom
4
Given : tan A=1/root3
draw a right angle triangle ABC right angled at C
put the value of tan in the triangle
we get:
 {ab}^{2}  =  {ac}^{2}  +  {bc}^{2}   \\  {ab}^{2}  =  (\sqrt{3 }) ^{2}  + 1 \\  {ab}^{2}  = 3 + 1 \\  {ab}^{2}  = 4 \\ ab =    \sqrt{4 }  \\ ab = 2
 \sin(a)  =  \frac{1}{2}  \\  \cos(b)  =  \frac{ \sqrt{3} }{2} \\  \sin(b)  =  \frac{ \sqrt{3} }{2}  \\  \cos(b)  =  \frac{1}{2}
put this value in the question
 \sin(a )  \times  \cos(b)   +  \cos(a)  \times  \sin(b)
we get
 \frac{1}{2}  \times  \frac{1}{2}  +  \frac{ \sqrt{3} }{2 } \times  \frac{ \sqrt{3} }{2}   \\  \frac{1}{4}  +  \frac{3}{4}  \\  \frac{4}{4}  = 1


Similar questions