Math, asked by SnehaThapalyal, 9 months ago

if tanA=3/4,find all other t-ratios

Answers

Answered by MohakBiswas
4

\bf\large\blue{Question\::-}

  • \bf{If\:tan\:A = \frac{3}{4},\: find \: all \: other \: trigonometrical\:ratios\:.}

\bf\large\blue{Solution\::-}

\star We know, tan =  \frac{height}{base}

therefore, height = 3

and, base. = 4

>> Now, by applying Pythagoras Theorem we can find out the value of hypotenuse.

hypotenuse ² = height ² + base ²

 \implies \: hypotenuse  \: ^{2}  =  {3}^{2}  +  {4}^{2}

 \implies \: hypotenuse  \: ^{2}  =  9 + 16

\implies \: hypotenuse  \: ^{2}  =  25

\implies \: hypotenuse    =   \sqrt{25}

\implies \: hypotenuse   =  5

Now we have the values of hypotenuse, height and base .

So we can find all the six trigonometrical ratios .

\bf\large\blue{Answer\::-}

\bf{sin\: A = \frac{height}{hypotenuse} = \frac{3}{5}}

\bf{cos\: A = \frac{base}{hypotenuse} = \frac{4}{5}}

\bf{tan\: A = \frac{height}{base} = \frac{3}{4}}

\bf{cot\: A = \frac{base}{height} = \frac{4}{3}}

\bf{cosec\: A = \frac{hypotenuse}{base} = \frac{5}{4}}

\bf{sec\: A = \frac{hypotenuse}{height} = \frac{5}{3}}

_____________________________________

\bf\large\blue{Hope\:it\:helps\:you\:.}

Similar questions