If tanA = 4/3, what is the value of sinA + cosA / sinA - cosA
Answers
/* Dividing numerator and denominator by cosA ,we get */
Therefore.,
•••♪
Answer:
GiventanA=
3
4
−−−(1)
Value \:of \: \frac{sin A + cos A}{sin A - cos A} Valueof
sinA−cosA
sinA+cosA
/* Dividing numerator and denominator by cosA ,we get */
\begin{gathered} = \frac{\frac{(sin A + cos A)}{cosA}}{\frac{(sin A - cos A)}{cosA}}\\= \frac{\frac{sinA}{cosA} + \frac{cosA}{cosA}}{\frac{sinA}{cosA} - \frac{cosA}{sinA}}\\= \frac{tanA + 1 }{tanA - 1} \end{gathered}
=
cosA
(sinA−cosA)
cosA
(sinA+cosA)
=
cosA
sinA
−
sinA
cosA
cosA
sinA
+
cosA
cosA
=
tanA−1
tanA+1
\boxed {\pink { Since, \frac{sinA}{cosA} = tan A }}
Since,
cosA
sinA
=tanA
= \frac{\frac{4}{3} + 1}{\frac{4}{3} - 1 } \: [From \:(1)] =
3
4
−1
3
4
+1
[From(1)]
\begin{gathered} = \frac{\frac{4+3}{3}}{\frac{4-3}{3}}\\= \frac{\frac{7}{3}}{\frac{1}{3}} \\= \frac{7}{3} \times \frac{3}{1} \\= 7 \end{gathered}
=
3
4−3
3
4+3
=
3
1
3
7
=
3
7
×
1
3
=7
Therefore.,
\red{Value \:of \: \frac{sin A + cos A}{sin A - cos A}}\green {= 7} Valueof
sinA−cosA
sinA+cosA
=7