If tanA = a tanB and sinA= b sinB, prove that cos^2 A = b^2 - 1 / a^2 - 1
Please answer this.
Answers
Answered by
7
sina=bsinb
or, b=sina/sinb ---------(1) and
tana=ntanb
or, sina/cosa=a(sinb/cosb)
or, a=sinacosb/cosasinb
or, a=b (cosb/cosa) -----(2)
or, acosa=bcosb
or, a²cos²a=b²cos²b
or, a²cos²a=b²(1-sin²b) [∵, sin²a+cos²a=1]
or, a²cos²a=b²(1-sin²a/b²) [using (1)]
or, a²cos²a=b²{(b²-sin²a)/b²}
or, a²cos²a=b²-sin²a
or, a²cos²a=b²-(1-cos²a)
or, a²cos²a=b²-1+cos²a
or, a²cos²a-cos²a=b²-1
or, cos²a(a²-1)=b²-1
or, cos²a=(b²-1)/(a²-1)
Answered by
3
Step-by-step explanation:
EFFORTS ARE EFFORTS
SEE THE SOLUTION ⬆️⬆️
NICE QUESTION
C.......U........SOON
MARK AS BRAINLIEST ANSWER..........
Attachments:
Similar questions
CBSE BOARD X,
5 months ago
Chemistry,
5 months ago
Chemistry,
11 months ago
Math,
1 year ago
Math,
1 year ago