if tanA-cotA=4,then what is the value of tanA+cotA
Answers
Answered by
6
Given that,
tanA - cotA = 4
Now, squaring on both sides we have,
(tanA - cotA)² = 4²
tan²A + cot²A - 2tanAcotA = 16
tan²A + cot²A - 2 = 16
tan²A + cot²A = 18
(tanA + cotA)² - 2tanAcotA = 18
(tanA + cotA)² - 2 = 18
(tanA + cotA)² = 20
tanA + cotA = √20
tanA + cotA = 2√5
Hence value of,
tanA + cotA = 2√5
tanA - cotA = 4
Now, squaring on both sides we have,
(tanA - cotA)² = 4²
tan²A + cot²A - 2tanAcotA = 16
tan²A + cot²A - 2 = 16
tan²A + cot²A = 18
(tanA + cotA)² - 2tanAcotA = 18
(tanA + cotA)² - 2 = 18
(tanA + cotA)² = 20
tanA + cotA = √20
tanA + cotA = 2√5
Hence value of,
tanA + cotA = 2√5
joginderdhariwal:
thanks
Similar questions