If tanA + cotA = 5 , then find the value of tan^2A + cot^2A
Answers
Answered by
8
tan a + cot a =5
(tan a + cot a)^2=25(squaring both sides)
tan^2a+cot^2a+2 tan a.1/tan a=25
tan^2a+cot^2a=25-2=23
(tan a + cot a)^2=25(squaring both sides)
tan^2a+cot^2a+2 tan a.1/tan a=25
tan^2a+cot^2a=25-2=23
Similar questions