If tanA + cotA = 5 , then find the value of tan^2A + cot^2A
Answers
Answered by
51
tanA + cotA = 5
(tanA +cotA)2 = tanA2 + cotA2 + 2(tanA * cotA)
25 = tanA2 + cot2A + 2
tanA *cotA = 1
tan2A + cot2A = 23
(tanA +cotA)2 = tanA2 + cotA2 + 2(tanA * cotA)
25 = tanA2 + cot2A + 2
tanA *cotA = 1
tan2A + cot2A = 23
Answered by
26
Answer:
Step-by-step explanation:
On Squaring both sides of the equation (1) , we get
/* We know that,
*/
Therefore,
•••♪
Similar questions