Math, asked by KamlaKumari, 1 year ago

If tanA + cotA = 5 , then find the value of tan^2A + cot^2A

Answers

Answered by Anonymous
51
tanA + cotA = 5

(tanA +cotA)2 = tanA2 + cotA2 + 2(tanA * cotA)
25 = tanA2 + cot2A + 2
tanA *cotA = 1

tan2A + cot2A = 23
Answered by mysticd
26

Answer:

The \: value \: of \\\: tan^{2}A+cot^{2}A+2 = 23

Step-by-step explanation:

Given \: tanA+cotA = 5--(1)

On Squaring both sides of the equation (1) , we get

(tanA+cotA)^{2}=5^{2}

\implies tan^{2}A+cot^{2}A\\+2tanAcotA = 25

/* We know that,

1) (a+b)^{2} = a^{2}+b^{2}+2ab

2) tanAcotA =1 */

\implies tan^{2}A+cot^{2}A+2 = 25

\implies tan^{2}A+cot^{2}A= 25-2

\implies tan^{2}A+cot^{2}A = 23

Therefore,

The \: value \: of\\ \: tan^{2}A+cot^{2}A+2 = 23

•••♪

Similar questions