If tanA + CotB = 2, A = 450 and B is an acute angle, then find the value of B
URGENT
Answers
Answer:
B = 1
Step-by-step explanation:
we know that
we know that Tan(90°-A)=CotA
we know that Tan(90°-A)=CotA we substitute the value of tanA
we know that Tan(90°-A)=CotA we substitute the value of tanA Here, Tan(90°-A)+CotB = 2
we know that Tan(90°-A)=CotA we substitute the value of tanA Here, Tan(90°-A)+CotB = 2 CotA + CotB = 2
we know that Tan(90°-A)=CotA we substitute the value of tanA Here, Tan(90°-A)+CotB = 2 CotA + CotB = 2 Cot(A+B) = 2
we know that Tan(90°-A)=CotA we substitute the value of tanA Here, Tan(90°-A)+CotB = 2 CotA + CotB = 2 Cot(A+B) = 2 we know that A=45° and value of 45°=1
we know that Tan(90°-A)=CotA we substitute the value of tanA Here, Tan(90°-A)+CotB = 2 CotA + CotB = 2 Cot(A+B) = 2 we know that A=45° and value of 45°=1 Cot(1+B) = 2
we know that Tan(90°-A)=CotA we substitute the value of tanA Here, Tan(90°-A)+CotB = 2 CotA + CotB = 2 Cot(A+B) = 2 we know that A=45° and value of 45°=1 Cot(1+B) = 2 CotB = 2-1
we know that Tan(90°-A)=CotA we substitute the value of tanA Here, Tan(90°-A)+CotB = 2 CotA + CotB = 2 Cot(A+B) = 2 we know that A=45° and value of 45°=1 Cot(1+B) = 2 CotB = 2-1 CotB = 1
we know that Tan(90°-A)=CotA we substitute the value of tanA Here, Tan(90°-A)+CotB = 2 CotA + CotB = 2 Cot(A+B) = 2 we know that A=45° and value of 45°=1 Cot(1+B) = 2 CotB = 2-1 CotB = 1 The value of B is 1
we know that Tan(90°-A)=CotA we substitute the value of tanA Here, Tan(90°-A)+CotB = 2 CotA + CotB = 2 Cot(A+B) = 2 we know that A=45° and value of 45°=1 Cot(1+B) = 2 CotB = 2-1 CotB = 1 The value of B is 1 #Hope you have help this#
we know that Tan(90°-A)=CotA we substitute the value of tanA Here, Tan(90°-A)+CotB = 2 CotA + CotB = 2 Cot(A+B) = 2 we know that A=45° and value of 45°=1 Cot(1+B) = 2 CotB = 2-1 CotB = 1 The value of B is 1 #Hope you have help this# #Thank You#