Math, asked by boredaf1325, 3 months ago

if tanA + cotB = 2 then find the value of tan²A + cot²B​

Answers

Answered by rg2888115
0

Answer:

1

Give me like and best rating and follow for more questions and brainlisets

Answered by AbhinavRocks10
3

Step-by-step explanation:

Given: It is given that tanA+cotA=2tanA+cotA=2

To find: The \;value \;of\; tan^2A+cot^2Atan </p><p>2 A+cot 2 A

Solution:

It\; is \;given \;that\; tanA+cotA=2tanA+cotA=2 , then

Squaring\; on \;both \;the sides, \;we\; have

(tanA+cotA)^2=4(tanA+cotA) 2 =4

tan^2A+cot^2A+2tanAcotA=4tan 2 A+cot 2 A+2tanAcotA=4

Now,\; because\; tanAcotA=1tanAcotA=1 , therefore \;the\; equation \;becomes,

➵tan^2A+cot^2A+2=4tan 2 A+cot 2 A+2=4

➵tan^2A+cot^2A=2tan 2 A+cot 2 A=2

➵Thus \;, the \;value\; of\; tan^2A+cot^2Atan cot2 A+cot 2 A will be 2

Similar questions