If tanA=ntanB and sinA = msinB, then prove that cos^2A= m^-1 / n^+1
Answers
Answered by
0
Step-by-step explanation:
tanA=ntanB
1/tanB=n/tanA
cotB=n/tanA........(1)
sinA=msinB
1/sinB=m/sinA
cosecB=m/sinA.......(2)
Now, cosec²B-cot²B=1
m²/sin²A-n²/tan²A=1
m²/sin²A-n²/(sin²A/cos²A)=1
m²/sin²A-n²cos²A/sin²A=1
(m²-n²cos²A)/sin²A=1
m²-n²cos²A=sin²A
m²-n²cos²A=1-cos²A
-n²cos²A+cos²A=1-m²
cos²A(1-n²)=1-m²
cos²A=1-m²/1-n²
cos²A=-(m²-1)/-(n²-1)
cos²A=m²-1/n²-1
Similar questions