If tanA+secA=√3, 0<A<π (radians)
find A
note: All values are in radian measure
Answers
Answered by
0
secA+tanA=3–√secA+tanA=3
1cosA+sinAcosA=3–√1cosA+sinAcosA=3
1+sinA=3–√cosA1+sinA=3cosA
3–√cosA−sinA=13cosA−sinA=1
At this point we turn the coefficients (3–√,−1)(3,−1) into polar coordinates (r,θ).(r,θ). It’s in the fourth quadrant.
r=3–√2+(−1)2−−−−−−−−−−√=4–√=2r=32+(−1)2=4=2
θ=arctan2−13–√=−30∘θ=arctan2−13=−30∘
We have 3–√=2cos(−30∘)3=2cos(−30∘) and −1=2sin(−30∘)−1=2sin(−30∘) so we can rewrite our equation
2cos(−30)
1cosA+sinAcosA=3–√1cosA+sinAcosA=3
1+sinA=3–√cosA1+sinA=3cosA
3–√cosA−sinA=13cosA−sinA=1
At this point we turn the coefficients (3–√,−1)(3,−1) into polar coordinates (r,θ).(r,θ). It’s in the fourth quadrant.
r=3–√2+(−1)2−−−−−−−−−−√=4–√=2r=32+(−1)2=4=2
θ=arctan2−13–√=−30∘θ=arctan2−13=−30∘
We have 3–√=2cos(−30∘)3=2cos(−30∘) and −1=2sin(−30∘)−1=2sin(−30∘) so we can rewrite our equation
2cos(−30)
Similar questions
Sociology,
4 months ago
Math,
4 months ago
Physics,
4 months ago
Math,
9 months ago
Social Sciences,
1 year ago