If tanA + sinA = m and tanA - sinA = n. Then show that m sq. - n sq. = +- 4√mn
Answers
Answered by
1
L. H. S
Squaring both sides,
(tanA+sin A)2=m2
Or, Tan2A+sin2A+2tanAsinA =m2..(i).
Similarly,
(TanA-sinA) 2=n2
Or,tan2A+sin2A-2tanAsinA=n2....(ii)
(*using formula (a+b)2 and (a-b) 2 in the above eqs.)
(i) - (ii)
4tanAsinA=m2-n2
RHS
+-4 root mn=+-root (tanA+sin A) (TanA-sinA)
=root(tan2A-sin2A)........ ( a2-b2 formula)
=root (sin2A/cos2A-sin2A)....
**Note: (tan2A=sin2A/cos2A)
=root[(sin2A(1/cos2A-1).. (taking sin2A common)
=Root [sin2A(sec2A-1)].......... (1/cosA=secA)
=Root(sin2A tan2A)......] [(sec2A-1)=tan2A]
=sinA. tanA.
Therefore, LHS=RHS(PROVED)
Squaring both sides,
(tanA+sin A)2=m2
Or, Tan2A+sin2A+2tanAsinA =m2..(i).
Similarly,
(TanA-sinA) 2=n2
Or,tan2A+sin2A-2tanAsinA=n2....(ii)
(*using formula (a+b)2 and (a-b) 2 in the above eqs.)
(i) - (ii)
4tanAsinA=m2-n2
RHS
+-4 root mn=+-root (tanA+sin A) (TanA-sinA)
=root(tan2A-sin2A)........ ( a2-b2 formula)
=root (sin2A/cos2A-sin2A)....
**Note: (tan2A=sin2A/cos2A)
=root[(sin2A(1/cos2A-1).. (taking sin2A common)
=Root [sin2A(sec2A-1)].......... (1/cosA=secA)
=Root(sin2A tan2A)......] [(sec2A-1)=tan2A]
=sinA. tanA.
Therefore, LHS=RHS(PROVED)
Nishthasharma57:
thanks sweetheart
Similar questions