if tanA + sinA = M and tanA - sinA = Nthen prove that m^2 - n^2 = 4root mn
Answers
Answered by
0
tanA+sinA=m
tanA-sinA=n
m^2-n^2=4rootmn
L.H.S
M^2-n^2
(tanA+sinA)^2-(tanA-sinA)^2
tanA^2+ sinA^2+2tanA sinA-(tan^2+sin^2-2tanAsin)
tan^2+sin^2+2tanA sinA-tan^2-sinA^2+2tanA sinA
4tanA sinA
RHS
4rootmn
4root (tanA+sinA)(tanA-sinA)
4root tan^2-sin^2
4root sin^2/cos^2-sin^2
4root sin^2 (1/cos^2-1
4root sin^2 (1-cos^2/cos^2)
4root sin^2 (sin^2/cos^2)
4root sin^4/cos^2
4root (sin^2/cosA)^2
4sin^2/cosA
4sinA×sinA/cosA
4sinA.tanA
Rhs
hence proof
Similar questions