Math, asked by saraswatankita74, 1 month ago

if tanø°=a/b, show that (sin2Ø-cos2Ø/sin2Ø+cos2Ø)=(a2-b2/A2+b2)​

Answers

Answered by mathdude500
3

Appropriate Question :-

 \sf\:If \: tan\phi  = \dfrac{a}{b}, \: show \: that \:  \dfrac{ {sin}^{2}\phi  -  {cos}^{2}\phi }{ {sin}^{2}\phi  +  {cos}^{2}\phi} =  \dfrac{ {a}^{2}  -  {b}^{2} }{ {a}^{2}  +  {b}^{2} }

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:tan\phi  =  \dfrac{a}{b}

Now, Consider

\rm :\longmapsto\:\dfrac{ {sin}^{2}\phi  -{cos}^{2}\phi}{ {sin}^{2}\phi+{cos}^{2} \phi }

\red{ \boxed{ \sf{ \:Divide \: numerator \: and \: denominator \: by \:  {cos}^{2}\phi }}}

\rm \:  =  \: \dfrac{\dfrac{{sin}^{2}\phi}{ {cos}^{2}\phi}-\dfrac{ {cos}^{2} \phi }{{cos}^{2} \phi } }{\dfrac{ {sin}^{2} \phi }{ {cos}^{2} \phi } + \dfrac{ {cos}^{2} \phi }{ {cos}^{2}\phi  }}

\rm \:  =  \: \dfrac{ {tan}^{2}\phi  - 1 }{ {tan}^{2} \phi  + 1}

\rm \:  =  \: \dfrac{\dfrac{ {a}^{2} }{ {b}^{2} } - 1}{\dfrac{ {a}^{2} }{ {b}^{2} } + 1}

\rm \:  =  \: \dfrac{ {a}^{2}  -  {b}^{2} }{ {a}^{2}  +  {b}^{2} }

Hence , Proved

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions