if tantheta = b/a , then value of cos2theta is what in terms of a and b?
Attachments:
Answers
Answered by
1
Answer:
opt3
Step-by-step explanation:
cos^2¤ = 1/sec^2¤= 1/(1+tan^2¤) = 1/(1+(b/a)^2)
1/(a^2+b^2)/a^2
= a^2/(a^2+b^2)---eq1
so sin^2¤= 1/cosec^2¤ = 1/(1+cot^2¤)
so sin^2¤ = 1/1/(1+(a/b)^2)
= b^2/(a^2+b^2)---eq2
and we know that cos2¤ = cos(¤+¤)= cos^2¤-sin^2¤
so from eq1 and eq2
cos2¤= a^2/(a^2+b^2) -b^2/(a^2+b^2)
= (a^2-b^2)/(a^2+b^2)
Similar questions